A New Meta-heuristic Bat Inspired Classification Approach for Microarray Data

نویسندگان

  • Sashikala Mishra
  • Kailash Shaw
  • Debahuti Mishra
چکیده

The main objective of a classifier is to discover the hidden class level of the unknown data. It is observed that data size, number of classes and dimension of feature space and inter class separability affect the performance of any classifier. For a long time, efforts are made in improving efficiency, accuracy and reliability of classifiers for a wide range of applications. Different optimization algorithms such as Particle Swarm Optimization (PSO) and Simulated Annealing (SA) have been used to enhance the accuracy of classifiers. Bat is also a metaheuristic search algorithm which is use to solve multi objective engineering problem. In this paper, a model has been proposed for classification using bat algorithm to update the weights of a Functional Link Artificial Neural Network (FLANN) classifier. Bat algorithm is based on the echolocation behaviour of bats. The proposed model has been compared with FLANN, PSO-FLANN. Simulation shows that the proposed classification technique is superior and faster than FLANN and PSO-FLANN. © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of C3IT

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intelligent Approach Based on Meta-Heuristic Algorithm for Non-Convex Economic Dispatch

One of the significant strategies of the power systems is Economic Dispatch (ED) problem, which is defined as the optimal generation of power units to produce energy at the lowest cost by fulfilling the demand within several limits. The undeniable impacts of ramp rate limits, valve loading, prohibited operating zone, spinning reserve and multi-fuel option on the economic dispatch of practical p...

متن کامل

OPTIMUM DESIGN OF REINFORCED CONCRETE FRAMES USING BAT META-HEURISTIC ALGORITHM

The main aim of the present study is to achieve optimum design of reinforced concrete (RC) plane moment frames using bat algorithm (BA) which is a newly developed meta-heuristic optimization algorithm based on the echolocation behaviour of bats. The objective function is the total cost of the frame and the design constraints are checked during the optimization process based on ACI 318-08 code. ...

متن کامل

A New Approach to Software Cost Estimation by Improving Genetic Algorithm with Bat Algorithm

Because of the low accuracy of estimation and uncertainty of the techniques used in the past to Software Cost Estimation (SCE), software producers face a high risk in practice with regards to software projects and they often fail in such projects. Thus, SCE as a complex issue in software engineering requires new solutions, and researchers make an effort to make use of Meta-heuristic algorithms ...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Meta-Heuristics Algorithms based on the Grouping of Animals by Social Behavior for the Traveling Salesman Problem

In this paper, we show a survey of meta-heuristics algorithms based on grouping of animals by social behavior for the Traveling Salesman Problem, and propose a new classification of meta-heuristics algorithms (not based on swarm intelligence theory) based on grouping of animals: swarm algorithms, schools algorithms, flocks algorithms and herds algorithms: a) The swarm algorithms (inspired by th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015